

Course: Nanostructured Materials

M.P. de Jong, NanoElectronics Group, University of Twente

2020-11-14	Lecture 1, Introduction: Introduction to nanostructured materials mainly from the perspective of nanoelectronics, brief history of the microelectronics industry, specifications and fabrication of wafers (mainly Si), clean rooms
	Problem Based Learning (PBL) assignment: First exploration of the concepts behind fabricating "bottom-up single-electron transistors", investigate various fabrication techniques required
2020-11-21	Lecture 2, Top-down fabrication: optical lithography, photomasks, diffraction
2020 11 21	limited resolution, resolution enhancement tools, lithography types (contact, proximity, projection), optical systems and light sources, mask aligners and steppers
	Problem Based Learning (PBL) assignment: Top-down fabricated part of the "bottom-up single-electron transistors"
2020-11-28	Lecture 3, Top-down fabrication: Other top-down lithography techniques (x-ray, e-beam, ion beam, nano-imprint,), wet and dry etching, isotropic and anisotropic etching
	Problem Based Learning (PBL) assignment: Group presentations of top-down fabricated part of the "bottom-up single-electron transistors"
2020-12-05	Lecture 4, bottom-up fabrication: Surface functionalization, various form of
	assembly, self-assembled monolayers (SAMs) on noble metals (Au), synthesis of Au
	nanoparticles (NPs), CdSe NPs, semiconductor nanowires
	Problem Based Learning (PBL) assignment: Bottom-up fabricated part of the
	"bottom-up single-electron transistors"
2020-12-12	Lecture 5, Bottom-up fabrication: Carbon based nanomaterials (graphene, carbon
2020-12-12	nanotubes, fullerenes), metal chalcogenite and BN 2D materials and nanotubes
	Problem Based Learning (PBL) assignment: Group presentations of bottom-up fabricated part of the "bottom-up single-electron transistors"
2020-12-19	Lecture 6, Properties: Electronic (band) structure of materials (brief reminder),
	quantum confinement (using a simple particle-in-a-box model), implications for
	electronic and optical properties of e.g. quantum wells and quantum dots
	Problem Based Learning (PBL) assignment:
	Modelling of Quantum confinement in semiconductor nanoparticles
2020-12-26	Self study
2021-01-02	Lecture 7, Transport: Single electron tunneling in single electron transistors and
	quantum dots, charging energy, Coulomb blockade
	Problem Based Learning (PBL) assignment: Group presentations on Modelling of
	Quantum confinement in semiconductor nanoparticles